pandas是一个强大的数据处理与分析工具集!
本书梳理了pandas中常用的函数,将函数之间的逻辑关系总结为“基础知识+4类操作+4类数据”的模块结构,展示了数据处理的宏观体系,并针对数据分析中“怎么分析”“怎么处理”“怎么加速”3个核心问题给出解决方案。
本书以Python中的pandas库为主线,介绍各类数据处理与分析方法。
本书共包含13章,第一部分介绍NumPy和pandas的基本内容;第二部分介绍pandas库中的4类操作,包括索引、分组、变形和连接;第三部分介绍基于pandas库的4类数据,包括缺失数据、文本数据、分类数据和时间序列数据,并介绍这4类数据的处理方法;第四部分介绍数据观测、特征工程和性能优化的相关内容。本书以丰富的练习为特色,每章的最后一节为习题,同时每章包含许多即时性的练习(练一练)。读者可通过这些练习将对数据科学的宏观认识运用到实践中。